Computation of 2-groups of narrow logarithmic divisor classes of number fields

نویسندگان

  • Jean-François Jaulent
  • Sebastian Pauli
  • Michael E. Pohst
  • Florence Soriano-Gafiuk
چکیده

We present an algorithm for computing the 2-group e C` res F of narrow logarithmic divisor classes of degree 0 for number fields F . As an application, we compute in some cases the 2-rank of the wild kernel WK2(F ) and the 2-rank of its subgroup K ∞ 2 (F ) := ∩n≥1K 2 (F ) of infinite height elements in K2(F ).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A generalization of zero-divisor graphs

In this paper, we introduce a family of graphs which is a generalization of zero-divisor graphs and compute an upper-bound for the diameter of such graphs. We also investigate their cycles and cores

متن کامل

A new Algorithm for the Computation of Logarithmic `-Class Groups of Number Fields

We present an algorithm for the computation of logarithmic `-class groups of number fields. Our principal motivation is the effective determination of the `-rank of the wild kernel in the K-theory of number fields.

متن کامل

A New Algorithm for the Computation of Logarithmic l-Class Groups of Number Fields

We present an algorithm for the computation of logarithmic `-class groups of number fields. Our principal motivation is the effective determination of the `-rank of the wild kernel in the K-theory of number fields.

متن کامل

A Criterion for the Logarithmic Differential Operators to Be Generated by Vector Fields

We study divisors in a complex manifold in view of the property that the algebra of logarithmic differential operators along the divisor is generated by logarithmic vector fields. We give • a sufficient criterion for the property, • a simple proof of F.J. Calderón–Moreno’s theorem that free divisors have the property, • a proof that divisors in dimension 3 with only isolated quasi–homogeneous s...

متن کامل

On the mean number of 2-torsion elements in the class groups, narrow class groups, and ideal groups of cubic orders and fields

Given any family of cubic fields defined by local conditions at finitely many primes, we determine the mean number of 2-torsion elements in the class groups and narrow class groups of these cubic fields, when they are ordered by their absolute discriminants. For an order O in a cubic field, we study the three groups: Cl2(O), the group of ideal classes of O of order 2; Cl2 (O), the group of narr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Symb. Comput.

دوره 44  شماره 

صفحات  -

تاریخ انتشار 2009